Location & dates Melbourne, Australia 18 - 20 Oct 2011
Deadlines Application closed
Online Registration unavailable on 27 April 2015

Due to a technical upgrade, the online registration system will be unavailable on Monday, 27 April 2015.
We apologise for any inconvenience this may cause.

Zinc finger nucleases (ZFNs) enable manipulation of the genome with unprecedented ease and precision. ZFNs are a class of engineered DNA-binding proteins that facilitate targeted editing of the genome by creating double-strand breaks (DSBs) in DNA at user-specified locations. DSBs are important for site-specific mutagenesis in that they stimulate the cell’s natural DNA-repair processes, namely homologous recombination and non-homologous end joining. Using well-established and robust protocols, these cellular processes can be harnessed to generate precisely targeted genomic edits resulting in cell lines, including somatic cell lines, with targeted gene deletions (knockouts), integrations, or modifications. Featured lectures will provide in depth discussion on the fundamentals of ZFNs as well as cutting edge applications for targeted gene knockout, integration and tagging. Additionally, each of the participants will conduct laboratory exercises to become proficient in various techniques for ZFN delivery, identification of mutants, and methods for quantitating ZFN efficiency. Registrants should be familiar with basic mammalian cell culture techniques, PCR and cloning. 

This course is organised in cooperation with:

sigmasmall  EMBL_Australia