Top image

Bioinformatics at EMBLResearch

Scientists across EMBL use computers to analyse a wide range of different biological, medical, environmental and ecological data. These bioinformatics activities include, but are not limited to: whole genome analyses, metagenomics, analysis of gene, protein, and metabolic networks, structural biology, protein and nucleotide sequence analysis and large scale cell imaging. There are also activities in instrumentation and engineering software development, especially at the Grenoble and Hamburg outstations.

While some research groups focus almost exclusively on computational research, there are also many groups at EMBL which combine experimental and computational analysis. Bioinformatics is an important part of the work done by the EMBL groups listed below; in addition to these groups, EMBL-EBI includes many labs dedicated to bioinformatics research and service provision.

Bars at the bottom of each image indicate the proportion of that group's activities taken up by bioinformatics.

Bertone Group
Pluripotency, reprogramming and differentiation

The Bertone Group analyses genetic and biochemical mechanisms underlying cellular differentiation events, particularly in human and mouse embryonic stem (ES) cell lines.

Gibson Team

Gibson Team
Biological sequence analysis

The Gibson team investigates protein sequence interactions, undertakes computational analyses of macromolecules, and develops tools to enhance sequence analysis research.

Huber Group

Huber Group
Multi-omics and statistical computing

The Huber group aims to understand inter-individual differences by large-scale statistical modelling and integrating multiple levels of genomic and molecular information from individuals with their phenotypic variation in health and disease.

Bork Group

Bork Group
Deciphering function and evolution of biological systems

By analysing and comparing complex molecular data, the Bork group predicts function, gains insights into evolution, and makes connections between genes, organisms and ecosystems.

Patil Group

Patil Group
Architecture and regulation of metabolic networks

The Patil group uses a combination of modelling, bioinformatics, and experimental approaches to study metabolic networks and how they are controlled.

Lamzin Group
Integrative modelling for structural biology

The Lamzin group applies and develops cutting-edge computational methods and experimental approaches for structural studies of molecules of biological and medical interest.

Hufnagel Group
Dynamics of cell growth and tissue architecture

The Hufnagel group studies the role of mechanical constraints on processes such as cell growth, programmed cell death, orientation of division, intra-tissue rearrangements and cell differentiation.

Korbel Group

Korbel Group
Origin and function of genomic variation

The Korbel group combines experimental and computational biology to decipher the function and origin of genetic variation with a particular focus on heritable genomic structural variants (SVs) and such occurring in cancer.

Krijgsveld Team
Quantitative proteomics

The Krijgsveld team uses a combination of biochemistry, analytical chemistry, mass spectrometry and bioinformatics to study the role of proteins in cell behaviour.

Beck Group
Structure and function of large macromolecular assemblies

Research in the Beck group combines biochemical approaches, proteomics and cryo-electron microscopy to study large macromolecular assemblies.

 

Carlomagno Group
Functional mechanisms of complex enzymes involved in RNA metabolism and methodology development for drug design

The Carlomagno group uses NMR spectroscopy in combination with biochemical and biophysical techniques to study the structure and dynamics of biomolecular complexes.

Hiiragi Group
Systems-level understanding of early mammalian development
Looking at the molecular, cellular and systems levels, the Hiiragi group studies how, early in mammal development, the embryo is shaped from a spherical mass of cells.

 

Panne Group
Integrating signals through complex assembly

The Panne group looks to understand important signalling processing pathways in the cell, which could help in the discovery of anti-viral drugs.

 

Sachse Group
Single-particle electron cryo-microscopy of the machinery involved in abnormal protein aggregation

The Sachse group uses electron cryo-microscopy to study protein aggregates, typical of neurodegnerative diseases such as Alzheimer’s, and the mechanisms cells normally use to eliminate them.  

Steinmetz Group
Systems genetics

The Steinmetz group bridges diverse domains of genome science, from deciphering the structure and function of genomes to the application of these insights in understanding diseases.

Svergun Group
Small-angle X-ray scattering from macromolecular solutions

The Svergun group places special emphasis on hybrid methods combining SAXS with X-ray crystallography, NMR spectroscopy, and electron microscopy to improve the resolution and cross-validate structural models. 

Briggs Group
Viruses and vesicles – cryo-electron microscopy and tomography

The Briggs group uses cryo-electron microscopy techniques to explore the mechanisms of assembly and budding of enveloped viruses and coated vesicles.

Ellenberg Group
Systems biology of cell division and nuclear organisation

The Ellenberg group studies how cells divide and organise in mitosis and meiosis, where errors can lead to problems such as cancer and infertility.

Furlong Group
Regulatory networks driving cell fate decisions: dissecting the logic

The Furlong group aims to understand fundamental principles of transcription, focusing on the processes that determine what a cell becomes during embryonic development.  

Schultz Group
Chemical cell biology

The Schultz group develops tools for imaging and for manipulating cellular enzyme activities, with a particular emphasis on the hereditary disease cystic brosis. 

Lemke Group
Structural light microscopy - single molecule spectroscopy

The Lemke group combines advanced microscopy with modern chemical biology tools to elucidate the nature of naturally unfolded proteins in biological systems and disease mechanisms. 

Gavin Group
Biomolecular networks

The Gavin group focuses on detailed and systematic charting of cellular networks and circuitry at molecular levels in time and space.  

Barabas Group
Mechanism, regulation, and application of mobile DNA

The Barabas group uses structural and molecular biology approaches to investigate how DNA rearrangements are carried out and regulated, with the ultimate goal of developing genetic engineering tools for research and therapy.

Genomics Core Facility

GeneCore is the in-house genomics service centre at EMBL equipped with state-of-the-art technologies required for functional genomics analyses and operated by highly qualified staff.  

Neveu Group
Systems biology of stem cell differentiation

 The Neveu group takes an integrated systems biology approach to investigate the molecular changes that determine what a stem cell becomes.  

Peri Group
Microglia: the guardians of the developing brain

The Peri group combines genetic approaches with quantitative imaging techniques to study interactions between neurons and the microglia that eliminate cellular debris in the brain. 

Pillai Group
Regulation of gene expression by non-coding RNAs

The Pillai group seeks to understand molecular mechanisms involved in piRNA biogenesis and its function in protecting the genome from instability.

Typas Group
Dissecting bacterial lifestyle and interspecies interactions with systems approaches

The Typas group develops and utilises high-throughput methods to study the cellular networks of different species of bacteria, and how these bacteria interact with the environment and with each other. 

Arendt Group
Evolution of the nervous system in Bilateria

By studying and comparing simple marine organisms, the Arendt group looks to understand the origin and evolution of our central nervous system.

Hentze Group
RNA biology, metabolism and molecular medicine

The Hentze group combines biochemical and systems level approaches to investigate the connections between gene expression, cell metabolism, and their role in human disease. 

Heppenstall Group
Molecular physiology of somatosensation

The Heppenstall group combines molecular, imaging and electrophysiological techniques to examine how sensory neurons turn information about touch and pain into electrical signals.

Leptin Group
Cell shape and morphogenesis: subcellular and supracellular mechanisms

The Leptin group studies the mechanisms and forces that determine cell shape in Drosophila and uses the zebrafish to analyse innate immune signalling.