Top image

Pepperkok TeamPublications

RNAi-Based Functional Profiling of Loci from Blood Lipid Genome-Wide Association Studies Identifies Genes with Cholesterol-Regulatory Function.
Blattmann, P., Schuberth, C., Pepperkok, R. & Runz, H.
PLoS Genet. 2013 Feb;9(2):e1003338. doi: 10.1371/journal.pgen.1003338. Epub 2013Feb 28.
Genome-wide association studies (GWAS) are powerful tools to unravel genomic loci associated with common traits and complex human disease. However, GWAS only rarely reveal information on the exact genetic elements and pathogenic events underlying an association. In order to extract functional information from genomic data, strategies for systematic follow-up studies on a phenotypic level are required. Here we address these limitations by applying RNA interference (RNAi) to analyze 133 candidate genes within 56 loci identified by GWAS as associated with blood lipid levels, coronary artery disease, and/or myocardial infarction for a function in regulating cholesterol levels in cells. Knockdown of a surprisingly high number (41%) of trait-associated genes affected low-density lipoprotein (LDL) internalization and/or cellular levels of free cholesterol. Our data further show that individual GWAS loci may contain more than one gene with cholesterol-regulatory functions. Using a set of secondary assays we demonstrate for a number of genes without previously known lipid-regulatory roles (e.g. CXCL12, FAM174A, PAFAH1B1, SEZ6L, TBL2, WDR12) that knockdown correlates with altered LDL-receptor levels and/or that overexpression as GFP-tagged fusion proteins inversely modifies cellular cholesterol levels. By providing strong evidence for disease-relevant functions of lipid trait-associated genes, our study demonstrates that quantitative, cell-based RNAi is a scalable strategy for a systematic, unbiased detection of functional effectors within GWAS loci.
Europe PMC

Genome-wide RNAi screening identifies human proteins with a regulatory function in the early secretory pathway.
Simpson, J.C., Joggerst, B., Laketa, V., Verissimo, F., Cetin, C., Erfle, H., Bexiga, M.G., Singan, V.R., Heriche, J.K., Neumann, B., Mateos, A., Blake, J., Bechtel, S., Benes, V., Wiemann, S., Ellenberg, J. & Pepperkok, R.
Nat Cell Biol. 2012 Jun 3;14(7):764-74. doi: 10.1038/ncb2510.
The secretory pathway in mammalian cells has evolved to facilitate the transfer of cargo molecules to internal and cell surface membranes. Use of automated microscopy-based genome-wide RNA interference screens in cultured human cells allowed us to identify 554 proteins influencing secretion. Cloning, fluorescent-tagging and subcellular localization analysis of 179 of these proteins revealed that more than two-thirds localize to either the cytoplasm or membranes of the secretory and endocytic pathways. The depletion of 143 of them resulted in perturbations in the organization of the COPII and/or COPI vesicular coat complexes of the early secretory pathway, or the morphology of the Golgi complex. Network analyses revealed a so far unappreciated link between early secretory pathway function, small GTP-binding protein regulation, actin cytoskeleton organization and EGF-receptor-mediated signalling. This work provides an important resource for an integrative understanding of global cellular organization and regulation of the secretory pathway in mammalian cells.
Europe PMC

A novel laser nanosurgery approach supports de novo Golgi biogenesis in mammalian cells.
Tangemo, C., Ronchi, P., Colombelli, J., Haselmann, U., Simpson, J.C., Antony, C., Stelzer, E.H., Pepperkok, R. & Reynaud, E.G.
J Cell Sci. 2011 Mar 15;124(Pt 6):978-87. doi: 10.1242/jcs.079640.
The Golgi complex has a central role in the secretory pathway of all higher organisms. To explain the synthesis of its unique stacked structure in mammalian cells, two major models have been proposed. One suggests that it is synthesized de novo from the endoplasmic reticulum. The second model postulates a pre-existing Golgi template that serves as a scaffold for its biogenesis. To test these hypotheses directly, we have developed an approach in which we deplete the Golgi complex from living cells by laser nanosurgery, and subsequently analyze the 'Golgi-depleted' karyoplast using time-lapse and electron microscopy. We show that biosynthetic transport is blocked after Golgi depletion, but is restored 12 hours later. This recovery of secretory transport coincides with an ordered assembly of stacked Golgi structures, and we also observe the appearance of matrix proteins before that of Golgi enzymes. Functional experiments using RNA interference-mediated knockdown of GM130 further demonstrate the importance of the matrix during Golgi biogenesis. By contrast, the centrosome, which can also be removed by laser nanosurgery and is not reformed within the considered time frame, is not required for this process. Altogether, our data provide evidence that de novo Golgi biogenesis can occur in mammalian cells.
Europe PMC

Micropilot: automation of fluorescence microscopy-based imaging for systems biology.
Conrad, C., Wunsche, A., Tan, T.H., Bulkescher, J., Sieckmann, F., Verissimo, F., Edelstein, A., Walter, T., Liebel, U., Pepperkok, R. & Ellenberg, J.
Nat Methods. 2011 Mar;8(3):246-9. doi: 10.1038/nmeth.1558. Epub 2011 Jan 23.
Quantitative microscopy relies on imaging of large cell numbers but is often hampered by time-consuming manual selection of specific cells. The 'Micropilot' software automatically detects cells of interest and launches complex imaging experiments including three-dimensional multicolor time-lapse or fluorescence recovery after photobleaching in live cells. In three independent experimental setups this allowed us to statistically analyze biological processes in detail and is thus a powerful tool for systems biology.
Europe PMC