Top image

Ephrussi GroupPublications

Control of RNP motility and localization by a splicing-dependent structure in oskar mRNA.
Ghosh, S., Marchand, V., Gaspar, I. & Ephrussi, A.
Nat Struct Mol Biol. 2012 Mar 18;19(4):441-9. doi: 10.1038/nsmb.2257.
oskar RNA localization to the posterior pole of the Drosophila melanogaster oocyte requires splicing of the first intron and the exon junction complex (EJC) core proteins. The functional link between splicing, EJC deposition and oskar localization has been unclear. Here we demonstrate that the EJC associates with oskar mRNA upon splicing in vitro and that Drosophila EJC deposition is constitutive and conserved. Our in vivo analysis reveals that splicing creates the spliced oskar localization element (SOLE), whose structural integrity is crucial for ribonucleoprotein motility and localization in the oocyte. Splicing thus has a dual role in oskar mRNA localization: assembling the SOLE and depositing the EJC required for mRNA transport. The SOLE complements the EJC in formation of a functional unit that, together with the oskar 3' UTR, maintains proper kinesin-based motility of oskar mRNPs and posterior mRNA targeting.
Europe PMC

Dimerization of oskar 3' UTRs promotes hitchhiking for RNA localization in the Drosophila oocyte.
Jambor, H., Brunel, C. & Ephrussi, A.
RNA. 2011 Dec;17(12):2049-57. Epub 2011 Oct 25.
mRNA localization coupled with translational control is a highly conserved and widespread mechanism for restricting protein expression to specific sites within eukaryotic cells. In Drosophila, patterning of the embryo requires oskar mRNA transport to the posterior pole of the oocyte and translational repression prior to localization. oskar RNA splicing and the 3' untranslated region (UTR) are required for posterior enrichment of the mRNA. However, reporter RNAs harboring the oskar 3' UTR can localize by hitchhiking with endogenous oskar transcripts. Here we show that the oskar 3' UTR contains a stem-loop structure that promotes RNA dimerization in vitro and hitchhiking in vivo. Mutations in the loop that abolish in vitro dimerization interfere with reporter RNA localization, and restoring loop complementarity restores hitchhiking. Our analysis provides insight into the molecular basis of RNA hitchhiking, whereby localization-incompetent RNA molecules can become locally enriched in the cytoplasm, by virtue of their association with transport-competent RNAs.
Europe PMC

Bruno acts as a dual repressor of oskar translation, promoting mRNA oligomerization and formation of silencing particles.
Chekulaeva, M., Hentze, M.W. & Ephrussi, A.
Cell. 2006 Feb 10;124(3):521-33.
Prior to reaching the posterior pole of the Drosophila oocyte, oskar mRNA is translationally silenced by Bruno binding to BREs in the 3' untranslated region. The eIF4E binding protein Cup interacts with Bruno and inhibits oskar translation. Validating current models, we directly demonstrate the mechanism proposed for Cup-mediated repression: inhibition of small ribosomal subunit recruitment to oskar mRNA. However, 43S complex recruitment remains inhibited in the absence of functional Cup, uncovering a second Bruno-dependent silencing mechanism. This mechanism involves mRNA oligomerization and formation of large (50S-80S) silencing particles that cannot be accessed by ribosomes. Bruno-dependent mRNA oligomerization into silencing particles emerges as a mode of translational control that may be particularly suited to coupling with mRNA transport.
Europe PMC

Splicing of oskar RNA in the nucleus is coupled to its cytoplasmic localization.
Hachet, O. & Ephrussi, A.
Nature 2004 Apr 29;428(6986):959-63.
oskar messenger RNA localization at the posterior pole of the Drosophila oocyte is essential for germline and abdomen formation in the future embryo. The nuclear shuttling proteins Y14/Tsunagi and Mago nashi are required for oskar mRNA localization, and they co-localize with oskar mRNA at the posterior pole of the oocyte. Their human homologues, Y14/RBM8 and Magoh, are core components of the exon-exon junction complex (EJC). The EJC is deposited on mRNAs in a splicing-dependent manner, 20-24 nucleotides upstream of exon-exon junctions, independently of the RNA sequence. This indicates a possible role of splicing in oskar mRNA localization, challenging the established notion that the oskar 3' untranslated region (3'UTR) is sufficient for this process. Here we show that splicing at the first exon-exon junction of oskar RNA is essential for oskar mRNA localization at the posterior pole. We revisit the issue of sufficiency of the oskar 3'UTR for posterior localization and show that the localization of unrelated transcripts bearing the oskar 3'UTR is mediated by endogenous oskar mRNA. Our results reveal an important new function for splicing: regulation of messenger ribonucleoprotein complex assembly and organization for mRNA cytoplasmic localization.
Europe PMC