Top image

Korbel GroupPublications

Impact of genomic structural variation in Drosophila melanogaster based on population-scale sequencing.
Zichner, T., Garfield, D.A., Rausch, T., Stutz, A.M., Cannavo, E., Braun, M., Furlong, E.E. & Korbel, J.O.
Genome Res. 2013 Mar;23(3):568-79. doi: 10.1101/gr.142646.112. Epub 2012 Dec 6.
Genomic structural variation (SV) is a major determinant for phenotypic variation. Although it has been extensively studied in humans, the nucleotide resolution structure of SVs within the widely used model organism Drosophila remains unknown. We report a highly accurate, densely validated map of unbalanced SVs comprising 8962 deletions and 916 tandem duplications in 39 lines derived from short-read DNA sequencing in a natural population (the "Drosophila melanogaster Genetic Reference Panel," DGRP). Most SVs (>90%) were inferred at nucleotide resolution, and a large fraction was genotyped across all samples. Comprehensive analyses of SV formation mechanisms using the short-read data revealed an abundance of SVs formed by mobile element and nonhomologous end-joining-mediated rearrangements, and clustering of variants into SV hotspots. We further observed a strong depletion of SVs overlapping genes, which, along with population genetics analyses, suggests that these SVs are often deleterious. We inferred several gene fusion events also highlighting the potential role of SVs in the generation of novel protein products. Expression quantitative trait locus (eQTL) mapping revealed the functional impact of our high-resolution SV map, with quantifiable effects at >100 genic loci. Our map represents a resource for population-level studies of SVs in an important model organism.
Europe PMC

Integrative genomic analyses reveal an androgen-driven somatic alteration landscape in early-onset prostate cancer.
Weischenfeldt, J., Simon, R., Feuerbach, L., Schlangen, K., Weichenhan, D., Minner, S., Wuttig, D., Warnatz, H.J., Stehr, H., Rausch, T., Jager, N., Gu, L., Bogatyrova, O., Stutz, A.M., Claus, R., Eils, J., Eils, R., Gerhauser, C., Huang, P.H., Hutter, B., Kabbe, R., Lawerenz, C., Radomski, S., Bartholomae, C.C., Falth, M., Gade, S., Schmidt, M., Amschler, N., Hass, T., Galal, R., Gjoni, J., Kuner, R., Baer, C., Masser, S., von Kalle, C., Zichner, T., Benes, V., Raeder, B., Mader, M., Amstislavskiy, V., Avci, M., Lehrach, H., Parkhomchuk, D., Sultan, M., Burkhardt, L., Graefen, M., Huland, H., Kluth, M., Krohn, A., Sirma, H., Stumm, L., Steurer, S., Grupp, K., Sultmann, H., Sauter, G., Plass, C., Brors, B., Yaspo, M.L., Korbel, J.O. & Schlomm, T.
Cancer Cell. 2013 Feb 11;23(2):159-70. doi: 10.1016/j.ccr.2013.01.002.
Early-onset prostate cancer (EO-PCA) represents the earliest clinical manifestation of prostate cancer. To compare the genomic alteration landscapes of EO-PCA with "classical" (elderly-onset) PCA, we performed deep sequencing-based genomics analyses in 11 tumors diagnosed at young age, and pursued comparative assessments with seven elderly-onset PCA genomes. Remarkable age-related differences in structural rearrangement (SR) formation became evident, suggesting distinct disease pathomechanisms. Whereas EO-PCAs harbored a prevalence of balanced SRs, with a specific abundance of androgen-regulated ETS gene fusions including TMPRSS2:ERG, elderly-onset PCAs displayed primarily non-androgen-associated SRs. Data from a validation cohort of > 10,000 patients showed age-dependent androgen receptor levels and a prevalence of SRs affecting androgen-regulated genes, further substantiating the activity of a characteristic "androgen-type" pathomechanism in EO-PCA.
Europe PMC

Criteria for inference of chromothripsis in cancer genomes.
Korbel, J.O. & Campbell, P.J.
Cell. 2013 Mar 14;152(6):1226-36. doi: 10.1016/j.cell.2013.02.023.
Chromothripsis scars the genome when localized chromosome shattering and repair occurs in a one-off catastrophe. Outcomes of this process are detectable as massive DNA rearrangements affecting one or a few chromosomes. Although recent findings suggest a crucial role of chromothripsis in cancer development, the reproducible inference of this process remains challenging, requiring that cataclysmic one-off rearrangements be distinguished from localized lesions that occur progressively. We describe conceptual criteria for the inference of chromothripsis, based on ruling out the alternative hypothesis that stepwise rearrangements occurred. Robust means of inference may facilitate in-depth studies on the impact of, and the mechanisms underlying, chromothripsis.
Europe PMC

Genome Sequencing of Pediatric Medulloblastoma Links Catastrophic DNA Rearrangements with TP53 Mutations.
Rausch, T., Jones, D.T., Zapatka, M., Stutz, A.M., Zichner, T., Weischenfeldt, J., Jager, N., Remke, M., Shih, D., Northcott, P.A., Pfaff, E., Tica, J., Wang, Q., Massimi, L., Witt, H., Bender, S., Pleier, S., Cin, H., Hawkins, C., Beck, C., von Deimling, A., Hans, V., Brors, B., Eils, R., Scheurlen, W., Blake, J., Benes, V., Kulozik, A.E., Witt, O., Martin, D., Zhang, C., Porat, R., Merino, D.M., Wasserman, J., Jabado, N., Fontebasso, A., Bullinger, L., Rucker, F.G., Dohner, K., Dohner, H., Koster, J., Molenaar, J.J., Versteeg, R., Kool, M., Tabori, U., Malkin, D., Korshunov, A., Taylor, M.D., Lichter, P., Pfister, S.M. & Korbel, J.O.
Cell. 2012 Jan 20;148(1-2):59-71.
Genomic rearrangements are thought to occur progressively during tumor development. Recent findings, however, suggest an alternative mechanism, involving massive chromosome rearrangements in a one-step catastrophic event termed chromothripsis. We report the whole-genome sequencing-based analysis of a Sonic-Hedgehog medulloblastoma (SHH-MB) brain tumor from a patient with a germline TP53 mutation (Li-Fraumeni syndrome), uncovering massive, complex chromosome rearrangements. Integrating TP53 status with microarray and deep sequencing-based DNA rearrangement data in additional patients reveals a striking association between TP53 mutation and chromothripsis in SHH-MBs. Analysis of additional tumor entities substantiates a link between TP53 mutation and chromothripsis, and indicates a context-specific
Europe PMC