Top image

Chemical Biology Core FacilityPublications

High-throughput pseudovirion-based neutralization assay for analysis of natural and vaccine-induced antibodies against human papillomaviruses.
Sehr, P., Rubio, I., Seitz, H., Putzker, K., Ribeiro-Muller, L., Pawlita, M. & Muller, M.
PLoS One. 2013 Oct 4;8(10):e75677. doi: 10.1371/journal.pone.0075677. eCollection2013.
A highly sensitive, automated, purely add-on, high-throughput pseudovirion-based neutralization assay (HT-PBNA) with excellent repeatability and run-to-run reproducibility was developed for human papillomavirus types (HPV) 16, 18, 31, 45, 52, 58 and bovine papillomavirus type 1. Preparation of 384 well assay plates with serially diluted sera and the actual cell-based assay are separated in time, therefore batches of up to one hundred assay plates can be processed sequentially. A mean coefficient of variation (CV) of 13% was obtained for anti-HPV 16 and HPV 18 titers for a standard serum tested in a total of 58 repeats on individual plates in seven independent runs. Natural antibody response was analyzed in 35 sera from patients with HPV 16 DNA positive cervical intraepithelial neoplasia grade 2+ lesions. The new HT-PBNA is based on Gaussia luciferase with increased sensitivity compared to the previously described manual PBNA (manPBNA) based on secreted alkaline phosphatase as reporter. Titers obtained with HT-PBNA were generally higher than titers obtained with the manPBNA. A good linear correlation (R(2) = 0.7) was found between HT-PBNA titers and anti-HPV 16 L1 antibody-levels determined by a Luminex bead-based GST-capture assay for these 35 sera and a Kappa-value of 0.72, with only 3 discordant sera in the low titer range. In addition to natural low titer antibody responses the high sensitivity of the HT-PBNA also allows detection of cross-neutralizing antibodies induced by commercial HPV L1-vaccines and experimental L2-vaccines. When analyzing the WHO international standards for HPV 16 and 18 we determined an analytical sensitivity of 0.864 and 1.105 mIU, respectively.
Europe PMC

Tripolin A, a novel small-molecule inhibitor of aurora A kinase, reveals new regulation of HURP's distribution on microtubules.
Kesisova, I.A., Nakos, K.C., Tsolou, A., Angelis, D., Lewis, J., Chatzaki, A., Agianian, B., Giannis, A. & Koffa, M.D.
PLoS One. 2013;8(3):e58485. doi: 10.1371/journal.pone.0058485. Epub 2013 Mar 13.
Mitotic regulators exhibiting gain of function in tumor cells are considered useful cancer therapeutic targets for the development of small-molecule inhibitors. The human Aurora kinases are a family of such targets. In this study, from a panel of 105 potential small-molecule inhibitors, two compounds Tripolin A and Tripolin B, inhibited Aurora A kinase activity in vitro. In human cells however, only Tripolin A acted as an Aurora A inhibitor. We combined in vitro, in vivo single cell and in silico studies to demonstrate the biological action of Tripolin A, a non-ATP competitive inhibitor. Tripolin A reduced the localization of pAurora A on spindle microtubules (MTs), affected centrosome integrity, spindle formation and length, as well as MT dynamics in interphase, consistent with Aurora A inhibition by RNAi or other specific inhibitors, such as MLN8054 or MLN8237. Interestingly, Tripolin A affected the gradient distribution towards the chromosomes, but not the MT binding of HURP (Hepatoma Up-Regulated Protein), a MT-associated protein (MAP) and substrate of the Aurora A kinase. Therefore Tripolin A reveals a new way of regulating mitotic MT stabilizers through Aurora A phosphorylation. Tripolin A is predicted to bind Aurora A similarly but not identical to MLN8054, therefore it could be used to dissect pathways orchestrated by Aurora kinases as well as a scaffold for further inhibitor development.
Europe PMC

Residues in the HIV-1 capsid assembly inhibitor binding site are essential for maintaining the assembly-competent quaternary structure of the capsid protein.
Bartonova, V., Igonet, S., Sticht, J., Glass, B., Habermann, A., Vaney, M.C., Sehr, P., Lewis, J.D., Rey, F.A. & Krausslich, H.G.
J Biol Chem. 2008 Nov 14;283(46):32024-33. Epub 2008 Sep 4.
Morphogenesis of infectious HIV-1 involves budding of immature virions followed by proteolytic disassembly of the Gag protein shell and subsequent assembly of processed capsid proteins (CA) into the mature HIV-1 core. The dimeric interface between C-terminal domains of CA (C-CA) has been shown to be important for both immature and mature assemblies. We previously reported a CA-binding peptide (CAI) that blocks both assembly steps in vitro. The three-dimensional structure of the C-CA/CAI complex revealed an allosteric effect of CAI that alters the C-CA dimer interface. Based on this structure, we now investigated the phenotypes of mutations in the binding pocket. CA variants carrying mutations Y169A, L211A, or L211S had a reduced affinity for CAI and were unable to form mature-like particles in vitro. These mutations also blocked morphological conversion to mature virions in tissue culture and abolished infectivity. X-ray crystallographic analyses of the variant C-CA domains revealed that these alterations induced the same allosteric change at the dimer interface observed in the C-CA/CAI complex. These results point to a role of key interactions between conserved amino acids in the CAI binding pocket of C-CA in maintaining the correct conformation necessary for mature core assembly.
Europe PMC

The structural basis for cap binding by influenza virus polymerase subunit PB2.
Guilligay, D., Tarendeau, F., Resa-Infante, P., Coloma, R., Crepin, T., Sehr, P., Lewis, J.D., Ruigrok, R.W., Ortin, J., Hart, D.J. & Cusack, S.
Nat Struct Mol Biol. 2008 May;15(5):500-6. Epub 2008 May 4.
Influenza virus mRNAs are synthesized by the trimeric viral polymerase using short capped primers obtained by a 'cap-snatching' mechanism. The polymerase PB2 subunit binds the 5' cap of host pre-mRNAs, which are cleaved after 10-13 nucleotides by the PB1 subunit. Using a library-screening method, we identified an independently folded domain of PB2 that has specific cap binding activity. The X-ray structure of the domain with bound cap analog m(7)GTP at 2.3-A resolution reveals a previously unknown fold and a mode of ligand binding that is similar to, but distinct from, other cap binding proteins. Binding and functional studies with point mutants confirm that the identified site is essential for cap binding in vitro and cap-dependent transcription in vivo by the trimeric polymerase complex. These findings clarify the nature of the cap binding site in PB2 and will allow efficient structure-based design of new anti-influenza compounds inhibiting viral transcription.
Europe PMC

Evaluation of different glutathione S-transferase-tagged protein captures for screening E6/E6AP interaction inhibitors using AlphaScreen.
Sehr, P., Pawlita, M. & Lewis, J.
J Biomol Screen. 2007 Jun;12(4):560-7. Epub 2007 May 3.
Human papillomavirus (HPV) infection is responsible for the development of cervical cancer and its premalignant lesions in women. The virus-encoded oncogene E6 is a promising target for an anti-HPV drug therapy. The authors describe the development of a homogenous screening assay for inhibitors of the E6 interaction with its cellular target, the E6-associated protein (E6AP), based on AlphaScreen technology. The E6 protein was expressed and purified as glutathione S-transferase (GST) fusion protein, and the binding to a biotinylated E6AP peptide was monitored using GST-detecting Acceptor beads coated either with anti-GST antibody or glutathione. After optimization of the assay conditions, a commercial library of 3000 compounds was screened for inhibitors. Active compounds were retested and counterscreened for E6/E6AP specificity using biotinylated GST as a control protein. The results obtained with both types of GST-detecting reagents correlated very well and demonstrated the great potential of the newly developed glutathione-coated Acceptor beads as a detection reagent for GST fusion proteins.
Europe PMC

Thanatop: a novel 5-nitrofuran that is a highly active, cell-permeable inhibitor of topoisomerase II.
Polycarpou-Schwarz, M., Muller, K., Denger, S., Riddell, A., Lewis, J.D., Gannon, F. & Reid, G.
Cancer Res. 2007 May 1;67(9):4451-8.
A series of nitrofuran-based compounds were identified as inhibitors of estrogen signaling in a cell-based, high-throughput screen of a diverse library of small molecules. These highly related compounds were subsequently found to inhibit topoisomerase II in vitro at concentrations similar to that required for the inhibition of estrogen signaling in cells. The most potent nitrofuran discovered is approximately 10-fold more active than etoposide phosphate, a topoisomerase II inhibitor in clinical use. The nitrofurans also inhibit topoisomerase I activity, with approximately 20-fold less activity. Moreover, the nitrofurans, in contrast to etoposide, induce a profound cell cycle arrest in the G(0)-G(1) phase of the cell cycle, do not induce double-stranded DNA breaks, are not substrates for multidrug resistance protein-1 export from the cell, and are amenable to synthetic development. In addition, the nitrofurans synergize with etoposide phosphate in cell killing. Clonogenic assays done on a panel of human tumors maintained ex vivo in nude mice show that the most active compound identified in the screen is selective against tumors compared with normal hematopoietic stem cells. However, this compound had only moderate activity in a mouse xenograft model. This novel class of topoisomerase II inhibitor may provide additional chemotherapeutic strategies for the development of cytotoxic agents with proven clinical utility.
Europe PMC