Last updated: May 2016

38          Biard, T. et al. In situ imaging reveals the biomass of giant protists in the global ocean. Nature 532, 504-507, doi:10.1038/nature17652 (2016).

37          Cornejo-Castillo, F. M. et al. Cyanobacterial symbionts diverged in the late Cretaceous towards lineage-specific nitrogen fixation factories in single-celled phytoplankton. Nat Commun 7, 11071, doi:10.1038/ncomms11071 (2016).

36          Malviya, S. et al. Insights into global diatom distribution and diversity in the world's ocean. Proc Natl Acad Sci U S A, doi:10.1073/pnas.1509523113 (2016).

35          Brum, J. R. et al. Illuminating structural proteins in viral "dark matter" with metaproteomics. Proc Natl Acad Sci U S A 113, 2436-2441, doi:10.1073/pnas.1525139113 (2016).

34          Guidi, L. et al. Plankton networks driving carbon export in the oligotrophic ocean. Nature 532, 465-470, doi:10.1038/nature16942 (2016).

33          Mordret, S. et al. The symbiotic life of Symbiodinium in the open ocean within a new species of calcifying ciliate (Tiarina sp.). Isme J, doi:10.1038/ismej.2015.211 (2015).

32          Clerissi, C. et al. Deep sequencing of amplified Prasinovirus and host green algal genes from an Indian Ocean transect reveals interacting trophic dependencies and new genotypes. Environ Microbiol Rep 7, 979-989, doi:10.1111/1758-2229.12345 (2015).

31          Lescot, M. et al. Reverse transcriptase genes are highly abundant and transcriptionally active in marine plankton assemblages. Isme J 10, 1134-1146, doi:10.1038/ismej.2015.192 (2016).

30          Roitman, S. et al. Closing the gaps on the viral photosystem-I psaDCAB gene organization. Environ Microbiol 17, 5100-5108, doi:10.1111/1462-2920.13036 (2015).

29          Le Bescot, N. et al. Global patterns of pelagic dinoflagellate diversity across protist size classes unveiled by metabarcoding. Environmental Microbiology 18, 609-626, doi:10.1111/1462-2920.13039 (2016).

28            Guidi, L. et al. A new look at ocean carbon remineralization for estimating deepwater sequestration. Global Biogeochemical Cycles, n/a-n/a, doi:10.1002/2014gb005063 (2015).

27            Brewin, R. J. W. et al. Regional ocean-colour chlorophyll algorithms for the Red Sea. Remote Sensing of Environment 165, 64-85, doi:10.1016/j.rse.2015.04.024 (2015).

26            Pesant, S. et al. Open science resources for the discovery and analysis of Tara Oceans data. Scientific data 2, 150023, doi:10.1038/sdata.2015.23 (2015).

25            Lima-Mendez, G. et al. Determinants of community structure in the global plankton interactome. Science 348, doi:Unsp 1262073 10.1126/Science.1262073 (2015).

24            de Vargas, C. et al. Eukaryotic plankton diversity in the sunlit ocean. Science 348, doi:Unsp 1261605 10.1126/Science.1261605 (2015).

23            Brum, J. R. et al. Patterns and ecological drivers of ocean viral communities. Science 348, doi:Unsp 1261498 10.1126/Science.1261498 (2015).

22            Sunagawa, S. et al. Structure and function of the global ocean microbiome. Science 348, doi:Unsp 1261359 10.1126/Science.1261359 (2015).

21            Villar, E. et al. Environmental characteristics of Agulhas rings affect interocean plankton transport. Science 348, doi:Unsp 1261447 10.1126/Science.1261447 (2015).

20            Romagnan, J. B. et al. Comprehensive model of annual plankton succession based on the whole-plankton time series approach. Plos One 10, e0119219, doi:10.1371/journal.pone.0119219 (2015).

xx             Roullier, F. et al. Particle size distribution and estimated carbon flux across the Arabian Sea oxygen minimum zone. Biogeosciences 11, 4541-4557, doi:DOI 10.5194/bg-11-4541-2014 (2014).

19            Gasmi, S. et al. Evolutionary history of Chaetognatha inferred from molecular and morphological data: a case study for body plan simplification. Frontiers in zoology 11, 84, doi:10.1186/s12983-014-0084-7 (2014).

18            Arrigoni R., R. Z. T., Chen C.A., Baird A.H. Benzoni F. Phylogenetic relationships and taxonomy of the coral genera Australomussa and Parascolymia (Scleractinia, Lobophylliidae). . Contributions to Zoology (2014).

17            Arrigoni, R. et al. A phylogeny reconstruction of the Dendrophylliidae (Cnidaria, Scleractinia) based on molecular and micromorphological criteria, and its ecological implications. Zoologica Scripta, n/a-n/a, doi:10.1111/zsc.12072 (2014).

16            Acinas, S. G. et al. Validation of a new catalysed reporter deposition-fluorescence in situ hybridization probe for the accurate quantification of marine Bacteroidetes populations. Environ Microbiol, doi:10.1111/1462-2920.12517 (2014).

15            Brady R. Cunningham, Jennifer R. Brum, Sarah M. Schwenck, Matthew B. Sullivan & John, S. G. An inexpensive, accurate and precise wet-mount method for enumerating aquatic viruses. Applied and Environmental Microbiology (AEM) 2995-3000, doi: doi: 10.1128/AEM.03642 (2014).

14            Benzoni, F., Arrigoni, R., Waheed, Z., Stefani, F. & Hoeksema, B. Phylogenetic relationships and revision of the genus Blastomussa(Cnidaria: Anthozoa: Scleractinia) with description of a new species. RAFFLES BULLETIN OF ZOOLOGY, 358–378 (2014).

13            Clerissi, C. et al. Unveiling of the Diversity of Prasinoviruses (Phycodnaviridae) in Marine Samples by Using High-Throughput Sequencing Analyses of PCR-Amplified DNA Polymerase and Major Capsid Protein Genes. Appl Environ Microb 80, 3150-3160, doi:Doi 10.1128/Aem.00123-14 (2014).

12            Chase, A. et al. Decomposition of in situ particulate absorption spectra. Methods in Oceanography 7, 110-124, doi: (2013).

11            Boss, E. et al. The characteristics of particulate absorption, scattering and attenuation coefficients in the surface ocean; Contribution of the Tara Oceans expedition. Methods in Oceanography 7, 52-62, doi: (2013).

10            Abida, H. et al. Bioprospecting Marine Plankton. Mar Drugs 11, 4594-4611, doi:Doi 10.3390/Md11114594 (2013).

9              Werdell, P. J., Proctor, C. W., Boss, E., Leeuw, T. & Ouhssain, M. Underway sampling of marine inherent optical properties on the Tara Oceans expedition as a novel resource for ocean color satellite data product validation. Methods in Oceanography 7, 40-51, doi: (2013).

8               Logares, R. et al. Metagenomic 16S rDNA Illumina tags are a powerful alternative to amplicon sequencing to explore diversity and structure of microbial communities. Environmental Microbiology, n/a-n/a, doi:10.1111/1462-2920.12250 (2013).

7               Benzoni, F. Echinophyllia tarae sp n. (Cnidaria, Anthozoa, Scleractinia), a new reef coral species from the Gambier Islands, French Polynesia. Zookeys, 59-79, doi:DOI 10.3897/zookeys.318.5351 (2013).

6               Swan, B. K. et al. Prevalent genome streamlining and latitudinal divergence of planktonic bacteria in the surface ocean. P Natl Acad Sci USA 110, 11463-11468, doi:DOI 10.1073/pnas.1304246110 (2013).

5               Solonenko, S. A. et al. Sequencing platform and library preparation choices impact viral metagenomes. Bmc Genomics 14, doi:Artn 320 Doi 10.1186/1471-2164-14-320 (2013).

4               Brum, J. R., Schenck, R. O. & Sullivan, M. B. Global morphological analysis of marine viruses shows minimal regional variation and dominance of non-tailed viruses. Isme J 7, 1738-1751, doi:DOI 10.1038/ismej.2013.67 (2013).

3               Hingamp, P. et al. Exploring nucleo-cytoplasmic large DNA viruses in Tara Oceans microbial metagenomes. Isme J 7, 1678-1695, doi:DOI 10.1038/ismej.2013.59 (2013).

2               Corse, E. et al. Phylogenetic Analysis of Thecosomata Blainville, 1824 (Holoplanktonic Opisthobranchia) Using Morphological and Molecular Data. Plos One 8, doi:ARTN e59439 DOI 10.1371/journal.pone.0059439 (2013).

1               Karsenti, E. et al. A Holistic Approach to Marine Eco-Systems Biology. Plos Biol 9, doi:ARTN e1001177 DOI 10.1371/journal.pbio.1001177 (2011).