How cells organise themselves influences their ability to communicate

pr11sep14_s

By huddling together, groups of cells can trap a signal molecule (green), communicating ‘in secret’.

 Credit: EMBL/S.Durdu

In a nutshell:
  • By huddling together, cells can trap the signal molecule FGF

  • Only cells within the group can sense trapped FGF, allowing them to communicate ‘in secret’

  • This exclusive in-group communication drives group-specific behaviour

From basketball to handball, rugby to American football, teams in a variety of sports huddle together to agree tactics in secret. Cells, too, can huddle to communicate within a restricted group, scientists at the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany, have found. The study, published today in Nature, is the first demonstration that the way cells organise themselves influences their ability to communicate. The researchers propose that this strategy, which they discovered in developing zebrafish, could be much more widespread, influencing processes like wound repair, organ formation and even cancer. 

“Everybody can speak, everybody can listen, but what’s said in the group stays in the group,” explains Sevi Durdu, who carried out the research, “by huddling together, these cells trap and concentrate a signal to communicate only amongst themselves.”

Durdu, a PhD student in Darren Gilmour’s lab at EMBL, found this behaviour in specific groups of cells in the zebrafish: the cells that will develop into the animal’s ‘lateral line’, a series of ear-like organs along the fish’s flank that allow it to sense changes in water pressure. As a zebrafish develops, a mass of cells moves along the developing animal’s side. At the point where one of these organs should form, a group of cells at the rear assembles into a huddle and stops, eventually developing into the organ. The rest of the cells, meanwhile, have moved on, until another group stops to form another organ, and so on. The cells that group together and stop to form the future organ also change shape, going from flat, crawling cells to upright, tear-shaped cells that come together like cloves in a bulb of garlic. Durdu found that these ‘garlic cloves’ huddle around a shared space, or lumen, in which they trap a molecule cells use to communicate: FGF. 

“Normally, FGF acts as a long-range communication signal. In the lateral line, we find that most of this signal is normally just wafting over the cells’ heads,” says Gilmour. “But when cells get together and huddle they can trap and concentrate this signal in their shared lumen, and make a decision that the others can’t: they stop moving.”

The EMBL scientists found that, by enabling a group of cells to increase the concentration of FGF they are in contact with, the shared lumen plays a critical role in determining when and where the huddles stop moving. When the scientists increased the concentration of FGF, cell huddles came to a standstill more abruptly, forming organs that were closer together. And when they decreased the level of FGF, huddles continued to migrate for longer and formed organs that were further apart.

“All epithelial cells – and that’s the cells that make up most of the organs in our bodies – can do this, so you could imagine that this type of local chamber could be forming transiently in many different parts of the body, whenever cells need to self-organise and communicate,” Gilmour says.

When the scientists broke up cell huddles in their zebrafish embryos, FGF leaked out. When this happens the cells in a group are no longer able to communicate efficiently, leading the scientists to wonder if this influence of organisation on communication could play a role in wound repair. When our skin is scratched, cells that were standing upright ‘lie down’ and start crawling – in essence, local huddles break up and cells change their behaviour. Another situation where cells may be huddling to communicate within a group, Gilmour and Durdu posit, is in organoids – self-assembled organ-like structures grown in the lab, which start by forming a common lumen.

In future, Gilmour and colleagues would like to understand the interplay between the ability – or decision – to stop and signals that they previously found drive cells to move forward, and how both are influenced by changes in cell shape.

The work was carried out in collaboration with the Bork group, which assisted with bioinformatic analysis, and the Schwab group, which provided expertise in electron microscopy. 

Source Article

Durdu, S. Iskar, M., Revenu, C., Schieber, N., Kunze, A., Bork, P., Schwab, Y. & Gilmour, D. Luminal signalling links cell communication to tissue architecture during organogenesis. Nature, 22 October 2014. DOI: 10.1038/nature13852.

Article Abstract

Morphogenesis is the process whereby cell collectives are shaped into differentiated tissues and organs. The self-organising nature of morphogenesis has been recently demonstrated by studies showing that stem cells in 3D culture can generate complex organoids, such as mini-guts, optic-cups and even mini-brains. To achieve this, cell collectives must regulate the activity of secreted signaling molecules that control cell differentiation, presumably through the self-assembly of microenvironments or niches. However, mechanisms that allow changes in tissue architecture to directly feedback on the activity of extracellular signals have not been described. Here, we investigate how the process of tissue assembly controls signaling activity during organogenesis in vivo, using the migrating zebrafish lateral line primordium. We show that Fibroblast Growth Factor (FGF) activity within the tissue controls the frequency at which it deposits rosette- like mechanosensory organs. Live-imaging revealed that FGF becomes specifically concentrated in microluminal structures that assemble at the centre of these organs and spatially constrain its signaling activity. Genetic inhibition of microlumen assembly and laser micropuncture experiments demonstrate that microlumina increase signaling responses in participating cells, thus allowing FGF to coordinate the migratory behaviour of cell groups at the tissue rear. As the formation of a central lumen is a self-organising property of many cell types, such as epithelia and embryonic stem cells, luminal signaling provides a potentially general mechanism to locally restrict, coordinate and enhance cell communication within tissues.

This post was originally published on EMBL News.

Press Contact

Iris Kruijen
EMBL Press Officer, Meyerhofstraße 1, 69117 Heidelberg, Germany

Tel: +49 6221 387-8443
E-mail: iris.kruijen@embl.de

Policy regarding use

Press and Picture Releases

EMBL press and picture releases including photographs, graphics, movies and videos are copyrighted by EMBL. They may be freely reprinted and distributed for non-commercial use via print, broadcast and electronic media, provided that proper attribution to authors, photographers and designers is made.