
SMAP programming guide
Jonas Ries, EMBL Heidelberg (www.rieslab.de, ries@embl.de)

1 Overview of architecture .. 1
2 Data Format ... 1
2.1 Localization data object .. 1
2.2 Accessing localization data .. 2
2.3 Adding attributes to localization data .. 2
3 Parameter sharing and synchronization .. 2
3.1 Accessing parameters .. 3
3.2 Synchronization .. 3
3.3 GUI parameters .. 3
4 Overview of plugin structure ... 4
4.1 Plugin GUI .. 4
4.2 Programmatically accessing SMAP plugins ... 5
5 Workflows ... 5
5.1 Workflow architecture ... 5
5.2 Assembling workflows .. 6
5.3 Workflow plugins .. 6
6 ROI Manager ... 7
6.1 The ROI manager object .. 7
6.2 Evaluation Plugins .. 7
6.3 Analysis of ROI manager evaluations .. 7

1 Overview of architecture
SMAP is developed in MATLAB using object-oriented programming. Its functionality is

broken down into many modules. Modules are implemented by extending basic classes and
provide specific functionality, but also information about the required input parameters to allow
a specific GUI to be displayed for each plugin.

SMAP is started by running SMAP.m. A SMAP object (in this case just called g) is constructed
as an object of the class gui.mainSMAP. Upon this call, the main GUI is made and many
plugin objects are instantiated and their GUIs are displayed within the main GUI.

In addition to superclasses and classes defining specific plugins, SMAP contains many
helper functions (in the directory SMAP/shared and SMAP/plugins/shared).

2 Data Format
Most analyses in SMAP are coordinate-based, i.e. they act on the fitted localizations. Thus,

the main data are single-molecule coordinates and other attributes. Combined with additional
information, these form a locData object (class: interfaces.LocalizationData) that is
shared between all plugins and can be accessed with obj.locData.

2.1 Localization data object
The main properties of the locData object are as follows:

.loc: This is a structure. Each field of this structure corresponds to one attribute of the
localizations (e.g. x or y coordinate, localization precisions, number of photons, frame,
likelihood,…) and is represented as a vector. All these vectors have the same length

http://www.rieslab.de/

(=number of localizations). In case several files are loaded, localizations are just appended
to the vectors, the field filenumber denotes to which file the localizations belong.

.grouploc: Same as above, but containing merged (grouped) localizations. These are
calculated when loading a localization data file or when locData.regroup is called and
stored separately to be immediately available all the time, as the task of grouping can take
several seconds.

.layer: This property contains all information corresponding to individual reconstructed
layers. Specifically, the sub-property filter contains logical vectors for each localization
attribute/field used for filtering, with true meaning that the corresponding localization is
used. groupfilter contains the respective information for grouped localizations. images
contains the reconstructed images for each layer and associated information.

.files: This contains the vector file, here every component corresponds to one loaded file
and stores all file-related information. Important fields contain:
.info: Metadata associated with the raw image data file
.tif: here all added tiff files are stored
.raw: a subset of the raw camera frames are stored
.savefit: a structure with the fitting parameters
At this location also other results of plugins that directly change the localization data is stored,

such as .driftinfo, .transform, .transformation etc.
.history: A cell array with each component containing the parameters of a specific plugin

that was applied to the localization data.

2.2 Accessing localization data
locs=obj.locData.getloc(fields,parameter1,value1,...) is a high-level

method of the localization data class to access localization attributes for a defined subset of
localizations. locs is a structure with fields corresponding to attributes of the localizations.
fields is a cell array of the fields that you want to read out. Additional parameter/value pairs
describe precisely what subset of localizations you want to access.

You can use this method to access filtered or unfiltered localizations, those only in a defined
ROI or those displayed in the main reconstruction window. You can access localizations in
specific layers, and define if to read out grouped or ungrouped localizations. This method
makes it easy to define in the main GUI what part of the localizations to use for a specific
analysis plugin.

For example, to return x and y coordinates that are displayed in layer 1 and layer 2 inside a
user-defined ROI use:

locs=obj.locData.getloc({'xnm', 'ynm'},'layer',[1 2], 'position',...
'roi')

See SMAP/+interfaces/private/getlocs.m for a full description of parameter/value
pairs.

2.3 Adding attributes to localization data
obj.locData.setloc(name,value) adds the attribute name to the localization data.
value needs to be a vector with a length corresponding to the number of localizations. With
obj.locData.regroup you can update the grouped localizations.

3 Parameter sharing and synchronization
All SMAP objects contain the same shared locData object as a property. However, this

object is only used to share data-specific parameters. In addition, all components can

communicate via a parameter object. This is another shared object, stored as an object
property obj.P.

3.1 Accessing parameters
Parameters are accessed via a user-defined name. Their value can be any MATLAB data

format or object, but large structures or objects lead to loss in performance. The main functions
are defined in the GuiParameter superclass (subclassed by all SMAP plugins) and
accessible as:

value=obj.getPar(name): Returns the value associated with name.
obj.setPar(name, value): Sets the parameter name to the specified value.

3.2 Synchronization
Parameters can be synchronized with GUI controls. Whenever a user changes a control, this

changes the parameter value and changes the control of any other synchronized GUI
component in other plugins to the same value. This provides a simple way of synchronizing
GUI parameters between different plugins. In addition, a function can be defined that is called
after a parameter is changed with obj.setPar or in the GUI, allowing any plugin to react to
changes in parameters (this is similar to the notify concept in MATLAB).

You can add a synchronization with:

obj.addSynchronization(ParameterName,handle,syncmode,changecallback),
as defined in interfaces.GuiParameterInterface.m.

Here, the function arguments have the following meaning and can take the following values:

ParameterName: shared parameter name. This creates the shared parameter field.
handle: handle to GUI control (guiobject) to be synchronized. Typically the guiobject is

accessible as a property of 'obj.guihandles'.
syncmode: what to synchronize. Use either 'String', 'Value', or 'other property', depending on

the nature of the parameter.
changecallback: function handle to function which is called when parameter is changed.

This is similar to events and listeners.

Alternatively, and probably simpler, add it to the definition of the plugin GUI (function
p=obj.guidef) with:

p.syncParameters={{'ParameterName','guiobject',syncmode,@obj.aftersy
nc_callback}};

ParameterName: Name of the shared parameter
guiobject: Name of the GUI object to be synchronized
syncmode: Cell array of what properties to synchronize (e.g. {'String', 'Value'})
@obj.changecallback: Function handle to the function that is called when the parameter

is changed.
See SMAP/Documentation/Manual/Plugin_Template.m for further explanations.

3.3 GUI parameters
All GUI controls (see section 4.2 on how to create those) are linked to parameters. Handles

to GUI controls are stored in obj.guihandles. With p=obj.getAllParameters these are
converted into a structure. This p is also directly passed on to the run(obj,p) method of a
plugin. Editable controls that contain values (or vectors) are automatically converted to
numerical variables, checkboxes are converted to logicals and popup menus return a structure
with string (all entries), value (number of selected entry) and selection (string of
selected entry).

Get a single GUI parameter with obj.getSingleGuiParameter('name').

Set GUI parameters with obj.setGuiParameters(p). p is a structure similar to that
obtained with obj.getAllParameters. Every field of p should have the same name as a
GUI control element. Its value is converted back to a value/state of the specific control.

4 Overview of plugin structure
All analysis plugins are subclasses of the class interfaces.DialogProcessor. For

implementing own plugins, we recommend starting with an existing plugin or preferably with
the template SMAP/Documentation/Manual/Plugin_Template. New plugins that are
saved in a sub-directory of SMAP/plugins are automatically recognized upon starting SMAP
and added to the menu.

In the class constructor you can set several switches for the plugin behavior (see template
for details). The GUI is automatically generated based on information in obj.guidef (see
section 4.2 for details). All handles to GUI components are stored in obj.guihandles. After
the GUI is created the method obj.initGui is called, here you can add functionality to
change the GUI or initialize the plugin.

All analysis plugins contain a Run button to start the analysis. This calls the method
obj.run(p). All GUI parameters are passed on in the structure p.

Usually, localizations to be analyzed are obtained with locs=obj.locData.getloc(…)
(see section 2.2).

To avoid opening many figure windows as outputs of plugins, there is a default output
window. This output window is created invisible if obj.showresults=false (default), but is
made visible if �show results is checked in the GUI. Every output creates a new tab. Create a
new tab with ax=obj.initaxis('name') and access it via the axis handle ax.

4.1 Plugin GUI
SMAP plugins have a simple syntax to define a GUI. However, you can also manually create

a GUI by either overwriting the obj.makeGui method or by using obj.initGui. Don’t forget
to store handles to new GUI controls as fields in obj.guihandles.

To make use of the automatic GUI creation, change the pard structure in
pard=obj.guihandles (see SMAP/Documentation/Manual/Plugin_Template for
details). In short, every control corresponds to a field in pard, the name of the field is the
common identifier (this will also be the name of the associated parameter). The value of the
field is again a structure with the following fields:

object: structure defining the GUI control. These correspond to name, value pairs of the
MATLAB uicontrol function. In case you want to pass on a cell (e.g. string of a
popupmenu) you need to use double brackets {{'str1', 'str2'}}.

position: Position of the GUI control on a 7 x 4 grid in the GUI panel.
Width: Width of the GUI control in units of the grid (optional, default =1).
Height: Height of the GUI control in units of the grid (optional, default =1).
TooltipString: Tool tip associated with the control; this is shown when the mouse hovers

over the control (optional).
Optional: If this is true, this control is hidden from view if the simple GUI is selected

(optional, default=false).

You can hide and show GUI controls dependent on the state of a specific control and define
the name and description for the plugin, as well define a synchronization of GUI controls
(for details see SMAP/Documentation/Manual/Plugin_Template.m and section 3.2).

4.2 Programmatically accessing SMAP plugins
You can create an object instantiating a plugin at the path path1/path2/pluginname with

o=plugins('path1','path2','pluginname'), e.g. with
o=plugin('Analyze','cluster','DBSCAN_cluster'). Attach the locData object
(e.g. attached to the SMAP object g.locData, or in any other plugin as obj.locData) with
o.attachLocData(locData). Attach the parameter structure P (from g.P or obj.P) with
o.attachPar(P). If you want to create a GUI, set o.handle=figurehandle to the figure
in which you want the GUI to be positioned, set o.guiPar.Vrim=100 to position the GUI in
the parent figure, and make the GUI with o.makeGUI. You can either set all parameters in
the structure p and execute the plugin with o.run(p), or you write all parameters in the GUI
with o.setPar (see section 3.1) and call results=o.processgo. This calls o.run(p),
makes the results window, returns the results and, if set in the object properties, backs up the
localization data for the ‘undo’ function and saves the ‘history’.

If you want to interact with plugins that were already instantiated by the main SMAP GUI you
can access them at o=g.children.category.children.plugin. Sometimes you have
to go deeper into the structure, e.g. for the guiSites category.

5 Workflows
5.1 Workflow architecture

Workflows are a collection of plugins that are chained and act sequentially on data. For every
plugin the next plugin is defined and processed data is passed on. Data is passed on as part
of an interfaces.WorkflowData object. Workflow plugins (see section 4.3) are special
plugins that can receive data, processes them and passes them on to the next plugin. Standard
plugins on the other hand act directly on the LocalizationData and can also be added in
workflows.

As workflow plugins can have more than one input channel (i.e. they can receive data from
several previous workflow plugins), data synchronization becomes important, so that always
the corresponding data (e.g. for SMLM fitting plugins the data corresponding to the same
frame) are processed at the same time.

 By default, this synchronization is controlled via the ‘frame’ property of the WorkflowData
object. Then only if all input channels have a WorkflowData object with the same ‘frame’
property (i.e. all previous plugins have already processed this frame), the plugin is called
(datout=obj.run(datin,p)) and the data object is removed from the buffers. Instead of
‘frame’ also other properties can be used for synchronization. The synchronization is
controlled by calling (in the constructor) the method:
obj.setInputChannels(numberOfInputChannels,syncmode);

syncmode can be 'frame' (default), 'ID' (you can define any other parameter to
synchronize and put it in the ID field of the WorkflowData object) or 'none' (no
synchronization carried out, the run function is called as soon as the first channel is
available.

The buffers that pass on data between plugins are meant to carry all large data. Other
parameters, especially those that do not change dynamically, are usually shared via the
obj.setPar and obj.getPar functions (see section 3.1).

5.2 Assembling workflows
The workflow itself is assembled using its GUI. Make a new workflow using SMAP

Menu/Plugins/New workflow. Add workflow plugins to the workflow by right-clicking on the
plugin list. For each plugin you need to select which other plugin passes on the data to this
plugin. Save will save the workflow object, Graph will display a graphical representation of the
workflow.

To use a workflow as a fitting workflow in SMAP, you can load the workflow in the Localize
tab by right-clicking on the tabs and selecting add workflow in the context menu. It is however
more convenient to load the workflow with the Change button. But for this, the GUI controls of
each workflow plugin need to be mapped to different tabs. This is done by a .txt file with the
same name as the workflow (see Workflow_Template.txt). It needs to contain the
following lines (remove %comments):

all.file=relative/path/nameOfWorkflow.mat %where to find the workflow file

all.FieldHeight=25 %height of fields in pixels

Define all tabs with

tab.tabname.name=Name of Tab

and all plugins (with the name PluginX) with

PluginX.handle=tabname %in which tab to position the GUI

PluginX.Vpos=1 % where to position it vertically (Nx4 grid)

PluginX.Xpos=2 % where to position it horizontally

5.3 Workflow plugins
To generate your own workflow plugins we recommend starting with an existing plugin or the

template Documentation/Manual/Workflow_Template.m. Workflow plugins are
similar to Analysis plugins (section 4), with the GUI defined in the same way. You need to
implement the following methods:

1. If you have more than one input channel then set the number of input channels with
obj.inputChannels=N in the constructor.

2. The obj.prerun(p) method is called once before starting the workflow. You can
initialize the workflow here. p contains a structure with all GUI parameters.

3. The main functionality is contained in obj.run(datain,p). datain is an
interfaces.WorkflowData object, see Workflow_Template.m for additional
information. Data is stored in datain.data1.

4. The last WorkflowData object to be processed (last data block) has
datain.eof=true.

5. A plugin uses the data1 passed to generate an output data data2.
6. This needs to be written in an interfaces.Workflow object. You can copy datain to

dataout and replace the data part with dataout.data=data2;
7. Triggering the output generation either directly using obj.output(dataout) or by

returning the variable output=dataout from the obj.run function then will pass the
data object to the next plugin.

6 ROI Manager
6.1 The ROI manager object

The ROI manager stores the positions and annotations of specific ROIs (also called sites)
that may originate from many files. It is an object se=interfaces.SiteExplorer that is
attached to obj.locData.SE=se and thus shared with all plugins. Its properties contain
three vectors of interfaces.SEsites that are lists with files, cells and sites (ROIs).
The main properties of interfaces.SEsites are (not all of them are used for the cells
and files properties):

pos: absolute position of the ROI center in nanometers
ID: ID of the ROI
info: structure which cell and file the ROI belongs to
annotation: structure with annotations defined in the ROI GUI
evaluation: structure with results from evaluation plugins
name: name of the ROI
image: rendered superresolution image of the ROI.

6.2 Evaluation Plugins
Evaluation plugins are plugins that evaluate single ROIs, specifically single objects of the

class interfaces.SEsites. Usually, they are run on all ROIs of a data set and output
results of the analysis.

They are subclasses of interfaces.SEEvaluationProcessor and can be programmed
in the same way as normal analysis plugins (section 4).

The functionality is encoded in the method out=obj.run(p).

Instead of obtaining localization data with locs=obj.locData.getloc, here we
recommend using analogous code locs=obj.getloc. If no Position parameters are passed
on, the position of the ROI is used.

The output of the evaluation is a structure with out.property=value. It is stored in the
interfaces.SiteExplorer object as:

SE.sites(k).evaluation.pluginname.property=value

6.3 Analysis of ROI manager evaluations
The results of the evaluation plugins are stored at

SE.sites(k).evaluation.pluginname.property

You can get a vector of properties with the command:
property=getFieldAsVector(SE.sites,'evaluation.pluginname.property')

In this way you can get all evaluation results and use them for further analysis / statistics.
When you write ROI manager analysis plugins, you can use this notation.

	1 Overview of architecture
	2 Data Format
	2.1 Localization data object
	2.2 Accessing localization data
	2.3 Adding attributes to localization data

	3 Parameter sharing and synchronization
	3.1 Accessing parameters
	3.2 Synchronization
	3.3 GUI parameters

	4 Overview of plugin structure
	4.1 Plugin GUI
	4.2 Programmatically accessing SMAP plugins

	5 Workflows
	5.1 Workflow architecture
	5.2 Assembling workflows
	5.3 Workflow plugins

	6 ROI Manager
	6.1 The ROI manager object
	6.2 Evaluation Plugins
	6.3 Analysis of ROI manager evaluations

