Figure 1: Interaction between the Polycomb group protein Sfmbt 4MBT domain and the Pho spacer region (Alfieri et al., 2013).

Figure 1: Interaction between the Polycomb group protein Sfmbt 4MBT domain and the Pho spacer region (Alfieri et al., 2013).

Figure 2: Gallery of eukaryotic RNA polymerases comprising 14-subunit Pol I (Fernández-Tornero et al., 2013), 12-subunit Pol II (PDB 1wcm) and 17-subunit Pol III (Hoffmann et al., 2015).

Figure 2: Gallery of eukaryotic RNA polymerases comprising 14-subunit Pol I (Fernández-Tornero et al., 2013), 12-subunit Pol II (PDB 1wcm) and 17-subunit Pol III (Hoffmann et al., 2015).

The Müller group uses X-ray crystallography, cryo-electron microscopy, biophysical and biochemical approaches to learn about the molecular mechanisms of transcription regulation in eukaryotes, where DNA is packaged into chromatin.

Previous and current research

We study how sequence-specific transcription factors assemble on DNA and how they interact with co-activators and general transcription factors to recruit RNA polymerases to their transcription start sites. We are also interested in the overall structure, architecture and the inner workings of large molecular machines involved in the transcription process, such as RNA polymerases I and III, their specific pre-initiation complexes and chromatin modifying complexes. Finally, we would like to gain insight into how DNA sequence information and epigenetic modifications work together to regulate gene transcription. To achieve these goals, we use structural information obtained by X-ray crystallography and cryo-electron microscopy combined with other biophysical and biochemical approaches.

RNA polymerase I and III transcription

RNA polymerase I (Pol I) and III (Pol III) consist of 14 and 17 subunits, respectively. Whereas Pol I is responsible for the biosynthesis of ribosomal RNA, Pol III synthesises small RNAs like tRNA and 5S RNA. Misregulation of Pol I and Pol III has been associated with different types of cancer. We are studying the overall architecture of the Pol I and Pol III enzymes and of their pre-initiation machineries using a broad and interdisciplinary approach that combines integrated structural biology with in vitro and in vivo functional analysis. Analysing the Pol I and Pol III transcription process in detail will help us to understand what features make the Pol I and Pol III machineries particularly suitable to fulfil their respective tasks, how Pol I and Pol III transcription is regulated, and how Pol I and Pol III transcripts get further processed.

Chromatin modifying complexes

The accessibility of chromatin in eukaryotes is regulated by ATP-dependent chromatin remodelling factors and histone modifying enzymes. We study the molecular architecture of chromatin-modifying complexes – such as Polycomb group (PcG) protein complexes –, how they are recruited, interact with nucleosomes, and are regulated.

Future projects and goals

  • Molecular insights into the recruitment of transcriptional regulators through the combination of DNA sequence-specific recognition and epigenetic modifications.
  • Structural and functional analysis of macromolecular machines involved in transcription regulation, chromatin remodelling and chromatin modification.
  • Contributing to a better mechanistic understanding of eukaryotic transcription and epigenetics using integrated structural biology combined with biochemical and cell biology approaches.
ERC ADVANCED INVESTIGATOR